显微镜知识库

显微镜知识库

显微镜知识库

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
U2OS cells transfected with an Mx1-GFP plasmid (signal enhanced using Alexa Fluor 488-conjugared anti-GFP antibody) and co-stained for nuclear DNA (Hoechst 33342), microtubules (Alexa 555) and F-actin (ATTO 643). Image was captured on Mateo FL.

Microscopy and AI Solutions for 2D Cell Culture

This eBook explores the integration of microscopy and AI technologies in 2D cell culture workflows. It highlights how traditional imaging methods—such as brightfield, phase contrast, and…
Digital microscopy simplifies documenting cell-culture results electronically while following 21 CFR part 11 guidelines for biopharma.

细胞培养电子记录的 21 CFR 第 11 部分简介

本文介绍了 FDA 21 CFR 第 11 部分的建议,特别关注细胞培养实验室中的审计追踪和用户管理。本文旨在为负责确保电子记录和电子签名符合 21 CFR 第 11 部分的生物技术和制药行业专业人士提供指导。数字式显微镜方法,例如 Mateo FL,相较于纸质方法,提供了更一致和高效的细胞培养结果电子文档记录的优势。
Dapi – Nucleus, GFP – Plasma Membrane, Thickness 100µm, 63x objektive, 469 Z planes, 2 channels, THUNDER Imager 3D Cell Culture. Courtesy M.Sc. Dana Krauß, Medical University of Vienna (Austria).

您的 3D 类器官成像和分析工作流程效率如何?

类器官模型已经改变了生命科学研究,但优化图像分析协议仍然是一个关键挑战。本次网络研讨会探讨了类器官研究的简化工作流程,首先是实时的三维细胞培养检查,接下来是高速、高分辨率的三维成像,生成清晰的图像和更纯净的数据,以便对生长速率、细胞迁移和三维细胞相互作用等参数进行准确地人工智能分割和量化,从而实现更深入的洞察。
AI-based cell counting performed with a phase-contrast and fluorescence image using the Mateo FL microscope.

利用AI增强的细胞计数实现精准和高效

本文描述了利用AI进行精确和高效的细胞计数。准确的细胞计数对于 2D 细胞培养的研究至关重要,例如细胞动力学、药物发现和疾病建模。精确的细胞计数对于确定细胞存活率、增殖速率和实验条件的影响至关重要。这些因素对于可靠和稳健的结果至关重要。描述了基于人工智能的方法如何显著提高细胞计数的准确性和速度,从而对细胞研究产生重大影响。
AI-based transfection analysis (left) of U2OS cells which were transfected with a fluorescently labelled protein. A fluorescence image of the cells (right) is also shown. The analysis and imaging were performed with Mateo FL.

利用AI实现细胞转染的高效分析

本文探讨了AI(AI)在优化 2D 细胞培养研究中转染效率测量中的关键作用。对于理解细胞机制而言,精确可靠的 2D 细胞培养转染效率测量至关重要。靶向蛋白的高转染效率对于包括活细胞成像和蛋白纯化在内的实验至关重要。手动估计存在不一致性和不可靠性。借助AI的力量,可以实现高效可靠的转染研究。
Image of confluent cells taken with phase contrast (left) and analyzed for confluency using AI (right).

通过 AI 汇合度提高 2D 细胞培养的精度

本文解释了如何利用人工智能(AI)进行高效、精确的 2D 细胞培养汇合度评估。准确评估细胞培养的汇合度,即表面积覆盖的百分比,对于可靠的细胞研究至关重要。传统方法使用视觉检查或简单算法,使结果不客观和精确,尤其是对于用于药物发现、组织工程和再生医学的复杂细胞系。利用自动化图像分析和深度学习算法的方法提供更好的精度,并可以增强实验结果。
40x magnification of organoids cluster taken on Mateo TL.Cell type: esophageal squamous carcinoma; scale  bar 15µm. Courtesy of bioGenous, China.

克服类器官三维细胞培养中的观察挑战

类器官在细胞生物学和药物发现中至关重要,因为它们能够模拟体内细胞的复杂性和结构,有助于癌症等微环境至关重要的疾病研究。类器官可根据患者的基因型进行定制,这也有助于个性化医学研究。
Fluorescence microscope image of a life-science specimen

荧光入门介绍

荧光是George Gabriel Stokes于1852年首次报道的一种现象。他观察到萤石在紫外线照射后开始发光。荧光是光致发光的一种形式,是指一种材料被光照射后会发射出光子。发射光的波长比激发光更长。这种效应又称为斯托克斯位移。
Image of MDCK (Madin-Darby canine kidney) cells taken with phase contrast.

相差和显微镜

相差是一种光学显微镜技术,用于增加未染色样本的对比度。未染色样本的结构,例如活细胞或其细胞器,在明场照明下观察时可能显得模糊,甚至变得透明。
Scroll to top