冷冻电子断层扫描

冷冻电子断层扫描(CryoET)用于分辨细胞环境内的生物分子,分辨率达到前所未有的一纳米以下。

 lms-cryo-electron-tomography-header-image.jpg

冷冻电子断层扫描(CryoET)用于分辨细胞环境内的生物分子,分辨率达到前所未有的亚纳米级,为研究分子社会学开启了一扇窗。在这一尺度下,仅通过形状就可以识别各个蛋白质,而不需要任何标记。但是,亚纳米分辨率下的成像伴随着一个重大的挑战:您需要找到并精准定位感兴趣的部位。

徕卡显微系统提供先进的冷冻电子断层扫描解决方案,使用冷冻光学显微镜进行快速、高分辨率的成像和精确的图像数据传输,同时在整个工作流程中保持最佳的冷冻条件。

什么是冷冻电子断层扫描?

使用冷冻电子断层扫描(也称为电子断层扫描),可以在原生和功能状态下以三维分子分辨率分析蛋白质间相互作用。样本在一系列受控的位置上倾斜时,会成像为一系列的二维图像。由此产生的图像“切片”可以组合起来,生成样本的三维重建图像。

相关文章

高分辨冷冻光学显微镜图像

本文阐述了在冷冻光电联用流程中如何利用THUNDER高分辨技术改善冷冻电子显微镜对细胞靶区的识别。 人类已知的疾病很多。为了找到有效的治疗方式,必须对健康和不健康人体当中最基本的细胞机制予以深入研究。

冷冻光电联用(Cryo-CLEM)之旅

本文主要介绍Cryo-CLEM技术及其为科学家带来的便益。此外,还特别说明了一些相关文献。 近期在冷冻电子显微镜工作流程领域取得的技术进步,让我们能够获取到细胞蛋白质社会学的3D数据,其分辨率更是达到前所未有的1纳米以下。工作流程中有一个步骤,需要从样品获取目标位置纳米级分辨率的图像,而要得到这样的结果,就需要用到冷冻光学显微镜。这种显微镜如果用于低温电子显微镜工作流程,通常就称为Cryo…
[Translate to chinese:] Projection of a confocal z-stack. Sum159 cells, human breast cancer cells kindly provided by Ievgeniia Zagoriy, Mahamid Group, EMBL Heidelberg, Germany. Blue–Hoechst - indicates nuclei, Green–MitoTracker mitochondria, and red–Bodipy - lipid droplets

低温光学显微镜的新成像工具

荧光显微镜图像能够为cryo-FIB加工提供定位支持,其质量决定了所制备薄片的结果。本文描述了LIGHTNING技术是如何显著提高图像质量,以及如何利用该技术基于荧光寿命的信息来辨别样品的不同结构。

改善冷冻电子断层扫描工作流程

徕卡显微系统有限公司和赛默飞世尔科技有限公司合作开发了一个整条技术路线的冷冻电子断层扫描工作流程。它确保从通过THUNDER成像仪EM冷冻CLEM(也可选择新版的CORAL Cryo冷冻共聚焦CLEM)预选与我们的EM GP2的玻璃化冷冻到Thermo Scientific Krios™ G3i Cryo TEM的3D图像重建的完全整合。所有仪器之间的无缝通信能够获得可靠的结果和可重现的实验。

CryoET工作流程包含哪些步骤?

该技术涉及样本的制备,样本在电子显微镜载网上,然后迅速陷入液氮中冷冻,使样本玻璃化,防止冰晶形成。

为了进行高分辨率的冷冻断层扫描,成像的标本切片厚度不应大于300纳米。为了观察样本的“较厚”部分(如细胞体),必须将样本减薄。除了冷冻超薄切片技术外,使用专门或多模态的冷冻扫描电子显微镜进行聚焦离子束(FIB)研磨是一种首选方法。两个离子束窗口的定位应确保在感兴趣区域内形成厚度大约200纳米的薄冰片(薄片),以便进行冷冻电镜电子断层扫描。

现在可以用冷冻透射电子显微镜扫描制备的样本,然后必须进行数据重建过程,将二维图像重建为单一的三维模型。

典型的CryoET工作流程中有哪些挑战?

在典型的CryoET工作流程中,最大挑战是难以确定包含要成像的细胞或蛋白质的精确感兴趣区域。目标定位反复失败会导致过程非常耗时,最终浪费昂贵的电子显微镜(EM)成像时间。工作流程中的另外两个挑战包括确保样本质量和冰层厚度始终如一,以及在将样本传送到冷冻透射电镜之前使样本保持充分玻璃化。

如何用冷冻光学显微镜克服冷冻电子断层扫描(CryoET)的挑战?

冷冻光学显微镜可以在两个重要方面对CryoET工作流程做出积极贡献。

首先,光学显微镜有助于评估样本的质量。使用冷冻光学显微镜可以快速了解样本的冷冻质量和冰层厚度,以及样本的分布是否适合进一步处理。徕卡的冷冻解决方案可确保样本在这些步骤中保持安全和活性。

其次,在提高工作流程效率方面,冷冻光学显微镜的最大潜力是能够在启动时间和成本密集型的冷冻电镜制备工作之前,更加精准地定位感兴趣的结构。徕卡的冷冻光学显微镜解决方案能够将目标结构的图像和坐标输出到后续的电镜步骤,从而显著缩短电镜成像时间。

Coral Cryo简介:迄今最有效的CryoET工作流程

徕卡提供专用的三维冷冻电子断层扫描工作流程解决方案,可确保样本活性、进行质量检查,最重要的是确保三维目标定位机制精准可靠,从而克服各种典型的挑战。我们优化的硬件(包含冷冻台和传送梭)配合先进的CryoET目标定位软件,以及适用于冷冻聚焦离子束(FIB)或真空冷冻传送(VCT)载物台的各种无缝集成和传送选项。

了解详情

实现精准的三维体目标定位

了解无缝衔接的徕卡显微系统冷冻电子断层扫描工作流程Coral Cryo如何使用共聚焦超分辨率更精准定位您感兴趣的结构。该工作流程可减少并优化工作流程的步骤,改善样本的装载和传送,因此可提高CryoET工作流程的效率。

顶部扫描电镜视图(左图)和聚焦离子束视图(右图)的超分辨率三维共聚焦叠加图像。叠加是使用荧光珠作为相关性标志来执行的。HeLa细胞标记如下:细胞核由Hoechst标记,蓝色;线粒体由MitoTracker Green标记,绿色;脂滴由Bodipy和Crimson荧光珠标记,红色)。比例尺:20微米。细胞由德国海德堡欧洲分子生物学实验室Mahamid团队的Ievgeniia Zagoriy提供,扫描电镜/聚焦离子束图像由该团队的Herman Fung提供。

相关文章

Correlation of markers in the LM and the FIB image.

如何对荧光结构三维定位以进行冷冻FIB切片

冷冻ET(电子断层扫描)是一种专用的透射电子显微镜技术,可以重建观察区域的三维体积。借助先进的冷冻EM(电子显微镜),图像分辨率可以提升到令人难以置信的亚纳米等级。因此,可以在细胞内的原生环境中研究蛋白质以及其他生物分子,从而揭示尚未探明的分子机制。由于细胞和组织必须薄到能够透过电子,样品必须进行切片以获取足够薄的样品体积(薄层)。为对样品中的靶区进行精确的三维定位,冷冻共聚焦显微镜是必不可少的工…
[Translate to chinese:] Cryo FIB lamella - Overlay of SEM and confocal fluorescence image. Target structure in yeast cells (nuclear pore proteine Nup159-Atg8-split Venus, red) marked by an arrow. Scale bar: 5 µm. Alegretti et al.,  Nature 586, 796-800 (2020).

使用冷冻共聚焦显微镜定位活性循环核孔复合物

本文介绍了如何利用冷冻光学显微镜,尤其是冷冻共焦显微镜来提高冷冻工作流程的可靠性。评估了EM网格和样品的质量,并分析了目标结构的分布。本文展示了如何将冷冻共焦3D数据投射到SEM图像上,将感兴趣结构可靠地保留在FIB切割的薄片内,以便在冷冻TEM中进行进一步研究。

Advancing Cell Biology with Cryo-Correlative Microscopy

Correlative light and electron microscopy (CLEM) advances biological discoveries by merging different microscopes and imaging modalities to study systems in 4D. Combining fluorescence microscopy with…

采用低温光电联用的宿主细胞-细菌相互作用成像

病原菌已开发了有趣策略,可在其宿主中建立和促进感染。大多数致病菌黏附于宿主细胞表面引发感染性疾病。了解致病微生物和宿主细胞之间的相互作用有助于了解感染过程和疾病的潜在机制。已证明各种显微技术是研究这些事件的关键工具。

Workflows and Instrumentation for Cryo-electron Microscopy

Cryo-electron microscopy is an increasingly popular modality to study the structures of macromolecular complexes and has enabled numerous new insights in cell biology. In recent years, cryo-electron…

如何选择:冷冻宽场还是冷冻共聚焦?

特点

共聚焦

Thunder(宽场)

灵敏度   *
速度   *
横向分辨率 ** *
纵向分辨率 ** *
冷冻成像条件下染料激发和发射的优化 ** *
抑制自发荧光(样本或碳层) *  
目标定位和导出 三维 二维

Scroll to top