显微镜知识库

显微镜知识库

显微镜知识库

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
Acousto-optics, sketch

声光调制在全光谱型激光共聚焦显微镜系统的应用

荧光最显著的特征是照射光(激发光)和检测光(发射光)颜色之间的偏移,称为斯托克斯位移。因此,在荧光成像中,不仅要将激发光和发射光的相应波长过滤出来,还需要将激发光从发射光中分离。过去,通常用平面光学元件,包括灰色或彩色滤光片和反射镜进行滤光和分光。虽然有多种平面光学元件可供使用,但固定的规格和低切换效率使其在使用上具有局限性,并且采用不同角度或梯度的涂层作为激发光和发射光的调谐方法也被证实并不可行…

2013年诺贝尔生理学或医学奖:囊泡运输调控机制的发现

2013年10月7日,卡罗林斯卡学院诺贝尔组织决定共同授予詹姆斯·E·罗斯曼、兰迪·W·舍克曼和托马斯·C·苏德霍夫2012年诺贝尔生理学或医学奖,以表彰他们“发现了调控囊泡运输的机制,这是细胞内的一个重要运输系统”。

荧光显微镜光学滤光器手册

荧光显微镜和其他基于光的应用需要具有严格光谱和物理特性的光学滤光器。这些特性通常是特定于应用的,适合并且最佳的光学器件在另一种应用中可能不适用且效果不佳。

光谱检测-如何设定特定探针发射光的光谱检测范围

为了拆分多色成像的发射光谱,首先由分束器或色散元件将不同颜色的光引入到不同的方向[1],带通滤片则能够最大限度地减少串色,并抑制所有残留的激发光,最终到达传感器。在过去,常使用的滤片是普通的玻璃带通滤片。如今,一项革命性的设计诞生了,那就是在多波段组件(SP探测器)中使用光度计滑块。该设计可以极为有效地探测发射光,同时提供完全可调谐性,与此同时带来的好处是使光谱扫描成为了可能。使用白激光作为光源时…

FRAP实验步骤式指南

漂白后荧光恢复(FRAP)已被认定为观察大分子平移扩散过程方面使用最为广泛的一种方法。由此产生的信息可用于确定动力学性质,如扩散系数、流动分数和荧光标记分子的传输速率。FRAP实验利用了短激光脉冲的荧光团辐照。先进的激光扫描显微镜如TCS…
John B. Gurdon

2012年诺贝尔生理学或医学奖——干细胞研究

诺贝尔奖表彰了这两位科学家,他们发现成熟、分化的细胞可以被重编程为能够发育成身体所有组织的未成熟具有干性的细胞。他们的发现彻底改变了我们对细胞和生物体发育过程的理解。
Sub-Femtolitre volume_Fluorescence correlation spectroscopy (FCS)

荧光相关光谱(FCS)

荧光相关光谱学(FCS)通过测量亚飞升体积内荧光强度的波动来检测扩散时间、分子数量或荧光标记分子的暗态等参数。这项技术是在20世纪70年代初期由瓦特·韦伯(Watt Webb)和鲁道夫·里格勒(Rudolf Rigler)独立开发的。
Live cell imaging, 4 colors: Mitochondria (MitoView Green, yellow) and actin (mNeonGreen, cyan) microtubuli (SIR-tubulin, magenta), endosomes (NIR750, green). Processed with DSE and DSE powered by Aivia.

白激光

在生物医学应用中,共聚焦显微镜的完美光源它应该有足够的强度,可调谐的波长,以便同时激发一系列样品。此外,它应该成为荧光寿命实验的脉冲光源。这样的光源已经出现:白激光。它采用高能脉冲红外光纤激光器经过光子晶体光纤以产生连续光谱。通过声光调制滤片从该连续光谱中选择窄带激光。

福斯特共振能量转移 (FRET)

荧光描述的是分子或原子在通过光的吸收激发电子系统后,自发发射光子的过程。发射的光子通常能量较低,因此波长较长(斯托克斯位移)。例如,蓝光激发可能导致绿色发射。如果第二个荧光分子能够吸收绿色光子,则该分子的发射再次发生斯托克斯位移,例如变为红色。这种再吸收在浓密样品中会导致测量误差(部分“内滤”效应)。在低浓度样品中,再吸收非常罕见。
Scroll to top