显微镜知识库

显微镜知识库

显微镜知识库

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
U2OS cells stained with Hoechst for nuclei (blue), MitoTracker green (Mitochondria structure, green) and TMRE (active mitochondria, magenta) and SiR for tubulin (red). Simultaneous acquisition of four channel large area overview using Spiral scan feature using the 10x/1.20 CS2 Water MotCORR objective.

如何获得具有完全时空相关性的多标记实验数据

首期MicaCam会聚焦于活细胞实验当中的挑战。我们的主持人Lynne Turnbull和Oliver Schlicker将以活细胞内线粒体活动研究为例,手把手为您展示如何用多孔板培养箱设计您的实验,以及如何分析结果。
Image of fixed U2OS cell expressing mEmerald-Tomm20 denoised using a 3D RCAN model trained with matching low and high SNR image pairs acquired on an iSIM system.

人工智能显微图像分析-介绍

人工智能引领的显微图像分析和可视化是用于数据驱动型科学发现的一项强大工具。人工智能技术可以帮助研究人员应对具有挑战性的成像应用,让他们能够从图像中获取更多的信息。
Acute lymphoblastic leukemia

如何从数字细胞病理学中获益

如果您认为数字细胞病理学的特征在于玻璃载玻片的数字化,那么意大利萨勒诺大学医院亚历山德罗·卡普托博士(Alessandro Caputo)的这场网络研讨会将为您拓宽视野。您可以深入了解如果在整个实验室工作流程中采用数字技术,将会实现哪些可能性。
Dr. Tawfik with the Proveo 8 surgical microscope.

Tawfik医生分享了他对白内障手术中水平劈核术的专业见解

据估计,每年全球约有2800万例白内障手术[1]。超声乳化术是去除白内障最常用的方法,而劈核技术在确保最佳手术效果中起着至关重要的作用。
Dual color volume rendering of Drp1 oligomers (green) and mito OM (red) in a live U2OS cell

多色四维超分辨光片显微镜

人工智能显微术研讨会主要关注和讨论显微术和生物医学成像领域的最新人工智能技术和工具。在该科学演示中,Yuxuan Zhao展示了如何通过渐进式深度学习策略并结合“双环调制的SPIM”设计改善活细胞中的细胞器三维成像。
Colon adenocarcinoma with 13 biomarkers shown

利用Cell DIVE 在单细胞水平上进行超复杂癌症组织分析

能够研究淋巴瘤细胞的异质性如何受到细胞对其微环境反应的影响,尤其是在突变、转录组和蛋白质水平上。蛋白质表达研究提供了有关细胞相互作用性质和蛋白质表达水平的最相关信息。超复合工作流程可用于研究同一癌症组织中的多种蛋白质。
OCT-Guided Retina Surgery

光学相干断层扫描(OCT)引导下视网膜手术的临床研讨会

在本记录中,来自新加坡某眼科中心的A教授和来自西班牙巴塞罗那某儿童医院的B医生分享了他们使用眼科显微镜所提供的术中OCT行视网膜手术的技术经验。他们报告了从常规黄斑裂孔手术到基因治疗的多个感兴趣儿科病例。
H&E stained micrograph of an intramucosal esophageal adenocarcinoma (left) enhanced with Aivia’s Pixel Classifier (right)

简化癌症生物学图像分析工作流

随着癌症生物学数据集的不断增长,显微图像分割和定量也越来越具挑战性,研究人员被迫在分析工作中耗费大量的时间。
Single timepoint of a drosophilia embryo, 3D object detection

高清检测发育过程中的关键事件

胚胎发育活细胞扩展成像,需要精准平衡曝光量、时间分辨率和空间分辨率,以保持细胞活性。为达到最优的分析结果,从成像数据中获取更多有价值的信息,需要在三个因素之间折中考虑。在本次研讨会中,Aivia团队将展示人工智能如何帮助您进行胚胎发育中的活细胞扩展成像。
Scroll to top