显微镜知识库

显微镜知识库

显微镜知识库

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
荧光显微镜下的组织切片,显示成年大鼠趾长伸肌与腓总神经之间的界面。2 周后的再生周围神经界面(RPNI)。使用 Mica 采集的图像。细胞核(蓝色)、神经丝(绿色)和 S100B(红色)染色。图片由伦敦帝国学院生物工程系 Aaron Lee 博士(Rylie Green 博士实验室)提供。

如何为深层肌肉组织中的轴突再生成像

这项研究重点介绍了亚伦-李(Aaron Lee)博士对截肢后肌肉移植中神经再生的定位研究。肢体缺失通常会导致生活质量下降,这不仅是因为组织缺失,还因为轴突再生紊乱引起的神经性疼痛。Mica组织学成像和荧光成像可帮助了解神经再生过程中轴突的生长和分支这项研究有助于塑造未来的神经假体接口设计,改善患者的治疗效果。
3D culture of ovarian cancer cells imaged using the confocal mode of Mica.

Mica: 助力伦敦帝国学院开展跨学科科研研究

这篇访谈重点介绍了伦敦帝国学院的 Mica 所产生的变革性影响。科学家们解释了Mica如何改变了游戏规则,扩大了研究的可能性,促进了跨学科合作。他们解释了使用 Mica 进行详细的活细胞成像如何提供更有意义的信息,使科学家始终站在研究的最前沿。研究小组预计,Mica将继续开辟新的研究途径,包括研究微流体技术和其他先进应用。
Blood vessel system of a zebrafish larvae

克服显微镜成像移动斑马鱼幼虫时的挑战

Zebrafish is a valuable model organism with many beneficial traits. However, imaging a full organism poses challenges as it is not stationary. Here, this case study shows how zebrafish larvae can be…
Salmonella biofilms 3D render

探索微生物世界:三维食品基质中的空间相互作用

Micalis 研究所是与 INRAE、AgroParisTech 和巴黎萨克雷大学合作的联合研究单位。其使命是开发食品微生物学领域的创新研究,以促进健康。在这一系列视频中,Micalis…
小鼠子宫内膜类器官的免疫荧光图像(CK14 和 DAPI 染色)

利用子宫内膜类器官推进子宫再生疗法

康教授团队致力于研究决定子宫微环境的关键因素,该环境对胚胎着床和妊娠维持至关重要。他们正为罹患阿什曼综合征等子宫内膜疾病的患者开发恢复子宫内膜功能的新型治疗策略。通过将 3D 子宫内膜类器官移植至小鼠模型,该团队揭示了子宫内膜强大的再生能力的细胞与分子机制。本次访谈将深入探讨其团队的研究内容及Mica在研究中所发挥的重要作用。
The role of extracellular signalling mechanisms in the correct development of the human brain

在神经发育过程中,细胞是如何相互交流的?

细胞间通信是大脑发育过程中一个必不可少的过程,它受到多种因素的影响,包括细胞的形态、粘附分子、局部细胞外基质和分泌囊泡。在本次网络研讨会上,您将了解到对这些机制更深入的理解是如何推动对神经发育障碍的理解的。
Masson-Goldner staining of a hedgehog brain slice.

如何优化您的组织学工作流程

简化您的组织学工作流程。独特的 Fluosync 检测方法内置于Mica中,可实现单次高分辨率 RGB 彩色成像。
Brain organoid labeled with lamin (green) and tubulin (magenta), acquired using Viventis Deep. Courtesy of Akanksha Jain, Treutlein Lab ETH-DBSSE Basel (Switzerland).

如何深入了解类器官和细胞球模型

在本电子书中,您将了解3D细胞培养模型(如类器官和细胞球)成像的关键注意事项。探索创新型显微镜解决方案,来实时记录类器官和细胞球的动态成像过程。
Branched organoid growing in collagen where the Nuclei are labeled blue. To detect the mechanosignaling process, the YAP1 is labeled green.

检查癌症类器官的发展进程

德国慕尼黑工业大学的Andreas Bausch实验室研究细胞和生物体中不同结构和功能形成的细胞和生物物理机制。他的团队设计了新的策略、方法和分析工具,以量化微米和纳米等级的发展机制和动态过程。关键研究领域包括干细胞和类器官,从乳腺类器官到胰腺癌类器官,以更好地了解疾病模型。
Scroll to top