神经外科与抬头显示技术
在以下视频采访中,瑞士巴塞尔大学医院神经外科副主任Raphael Guzman医生谈到了他在使用 ARveo 增强现实显微镜进行头部手术方面的经验。
增强现实(AR)荧光视频鉴赏
凭借十余年来在荧光成像技术领域的领先地位,MFL800是具有徕卡专利的AR荧光增强现实平台众多模式中首个上市的荧光模式。
AR荧光增强现实平台拥有精密的成像传感器和复杂的算法,能够对多个谱段的光线进行摄取、优化和组合,最终呈现色彩自然的组织解剖结构,准确表达荧光亮度。
脑血管和颅底神经外科的临床应用
在本次网络研讨会上,Bendok 博士和 Morcos 博士解释了增强现实和荧光如何增强可视化并支持外科决策。他们分享了来自 Leica Microsystems 的 GLOW AR 平台的第一手经验。使用 GLOW800 增强现实(AR)荧光和 ICG,您可以观察到自然色彩的脑部解剖结构,实时血流增强,具有完整的深度感知。查看 GLOW800 AR…
学习如何从共聚焦图像中去除自发荧光
了解自发荧光的常见原因以及如何将其从共聚焦显微镜图像中去除。根据应用的不同,自发荧光的来源可能有很多种,但幸运的是,同样也有很多的解决方案--从更换介质到使用荧光寿命成像和近红外染料。
什么是光谱探测器(SP 探测器)?
徕卡显微系统的 SP 探测器是一种用于点扫描显微镜(尤其是共聚焦显微镜)的复合检测单元。SP 探测器可将光分成多达 5 个光谱带。这些光谱带是独立的,并且在整个可见光谱内可以连续调节。每个光谱带中的光由光传感器检测:光电倍增管(PMT)或混合探测器(HyD)。
什么传感器最适合共聚焦成像?
混合光电探测器(HyD)是最好的!为什么会这样,这篇简短的文章中有解释。
荧光和量子点的基本原理和发展历史
在您的科研生涯的某个时候,都有可能会用到荧光显微镜。这种无处不在的技术改变了显微镜学家对研究对象进行成像、标记和追踪的方式,不论是整个生物体,还是单个蛋白质等等。
通过本文,我们将探讨什么是“荧光”,包括其定义背后的历史和基础物理原理,绿色荧光蛋白(GFP)的发现和应用,并展望量子点等荧光探针不断扩大的应用领域。
宽场显微镜简介
‘宽场显微镜’是最基本的显微镜技术之一。其根本上是将整个感兴趣的样本暴露于光源下,由观察者或摄像头(也可连接到计算机显示器)获得图像的技术。
光激活、光转化和光控开关荧光蛋白
荧光蛋白(FP)如GFP、YFP或DsRed都是可视化观察活细胞中细胞组分的强大工具。尽管如此,目前仍然会有传统FP达到极限的情形发生。普通FP无法观察特定兴趣蛋白中专有、空间有限的蛋白质群体,因为它们在整个细胞中都有表达。此时,光激活、光转化和光控开关荧光蛋白就登上了舞台。荧光套件中的成员可以从非荧光状态激活,可以改变发射光谱,甚至可以逆转式地“开启和关闭”。借助这些“光学荧光笔”,研究人员可以…