医疗

医疗

医疗

探索专为神经外科、眼科、整形外科、耳鼻喉科和牙科 HCP 量身定制的科学和临床综合资源,包括行业洞见、临床案例研究和专题研讨会。重点突出手术显微镜的最新进展,让您了解AR荧光、三维可视化和术中OCT成像等尖端技术如何赋能复杂手术决策的信心和精准操作。
Single cells collected via laser microdissection as part of the Deep Visual Proteomics workflow.

AI meets Deep Visual Proteomics (DVP) to Advance Disease Research

In this webinar, Dr. Andreas Mund introduces Deep Visual Proteomics (DVP) – a cutting-edge platform that integrates AI-powered tissue modeling with spatially resolved, untargeted proteomics. He…
Artificial Intelligence (AI) segmentation used in conjunction with LMD to increase discovery throughput.

Biomarker Discovery with Laser Microdissection

Explore the potential of spatial proteomics workflows, such as Deep Visual Proteomics (DVP), to decipher pathology mechanisms and uncover druggable targets. Altered protein expression, abundance, or…

空间蛋白质组学的突破如何拯救生命

中毒性表皮坏死溶解症(TEN)是一种罕见的、但对抗生素或痛风治疗等常见药物的破坏性反应。这种疾病开始时并无大碍,通常只是皮疹,但会迅速升级为大面积皮肤脱落,类似于严重烧伤。尽管 TEN病情十分严重,但其基本机制仍然难以捉摸,治疗方案也仅限于支持性护理。TEN 的死亡率高达 30%,长期以来一直是临床医生的噩梦,直到现在才有了靶向疗法。

A Novel Laser-Based Method for Studying Optic Nerve Regeneration

Optic nerve regeneration is a major challenge in neurobiology due to the limited self-repair capacity of the mammalian central nervous system (CNS) and the inconsistency of traditional injury models.…
Pancreatic Ductal Adenocarcinoma with 11 Apoptosis biomarkers shown – BAK, BAX, BCL2, BCLXL, Caspase9, CIAP1, NaKATPase, PCK26, SMAC, Vimentin, and XIAP.

Transforming Research with Spatial Proteomics Workflows

Spatial Proteomics, Nature Methods 2024 Method of the Year, is driving research advancements in cancer, immunology, and beyond. By combining positional data with high throughput imaging of proteins in…
Automated Laser Microdissection for Proteome Analysis

深度视觉蛋白质组学提供精确的空间蛋白质组信息

尽管可使用基于成像和质谱的方法进行空间蛋白质组学研究,但是图像与单细胞分辨率蛋白丰度测量值的关联仍然是个巨大的挑战。最近引入的一种方法,深层视觉蛋白质组学(DVP),将细胞表型的人工智能图像分析与自动化的单细胞或单核激光显微切割及超高灵敏度的质谱分析结合在了一起。DVP在保留空间背景的同时,将蛋白丰度与复杂的细胞或亚细胞表型关联在一起。
Pancreatic Ductal Adenocarcinoma imaged with Cell DIVE. Analysis done by Aivia.

空间生物学指南

什么是空间生物学,研究人员如何利用其工具来满足后组学时代日益增长的生物学问题需求?这篇概述文章简要介绍了空间生物学及其技术,以及这一动态领域中的关键研究问题。
一张 12 微米厚的脑切片图像,在解剖前用甲苯胺蓝染色。该图像使用显微镜 63 倍物镜拍摄。

激光显微切割技术导论

组织学和生物学样本的异质性通常要求在分子生物学分析前从周围组织中分离出特定的单个细胞或细胞群。激光显微切割(LMD)是一种高效选择性收集用于制备DNA、RNA、蛋白质或其他生物材料样本以供分析的方法。这是一种显微镜控制的操纵技术,利用聚焦激光束精确分离样本、细胞和组织。本文阐述了LMD的基本原理。
Mouse brain (left) microdissected with a 10x objective (upper right). Inspection of the collection device (lower right).

激光微切割(LMD)促进的分子生物学分析

使用激光微切割(LMD)提取生物分子、蛋白质、核酸、脂质和染色体,以及提取和操作细胞和组织,可以深入了解基因和蛋白质的功能。它在神经生物学、免疫学、发育生物学、细胞生物学和法医学等多个领域有广泛应用,例如癌症和疾病研究、基因改造、分子病理学和生物学。LMD 也有助于研究蛋白质功能、分子机制及其在转导途径中的相互作用。
Scroll to top