联系我们
显微镜科学与教学知识中心

显微镜科学与教学知识中心

显微镜科学与教学知识中心

徕卡显微系统的知识库提供有关显微镜学科的科学研究和教学材料。内容旨在对显微镜初学者、有经验的显微镜操作实践者和使用显微镜的科学家在他们的日常工作和实验有所帮助。这里有探索交互式教程和应用笔记,你可以找到你需要的显微镜的基础知识以及前沿技术——快来加入徕卡显微知识社区,分享您的专业知识!
Comparison when observing a rodent model organism with a Greenough versus CMO (common main objective) stereo microscope for a task like surgery.

Rodent and Small-Animal Surgery

Learn how you can perform rodent (mouse, rat, hamster) and small-animal surgery efficiently with a microscope for developmental biology and medical research applications by reading this article.
Image Guided Surgery

Navigating Through the Brain

One of the challenges of neurosurgery is orientation at the surgical site. When resecting tumors, removing arteriovenous malformations, or clipping aneurysms, surgeons often have to work near healthy…
[Translate to chinese:] Left: Tissue cells marked with an immunolabel (FITC) illuminated with wide-band UV excitation. Note the tissue structure with blue autofluorescence. Right: Same tissue and same immunostaining with FITC label illuminated with epi-illumination using narrow-band blue (490 nm) light. Note the increased image contrast (Ploem, 1967)

Milestones in Incident Light Fluorescence Microscopy

Since the middle of the last century, fluorescence microscopy developed into a bio scientific tool with one of the biggest impacts on our understanding of life. Watching cells and proteins with the…
[Translate to chinese:] Left: Tissue cells marked with an immunolabel (FITC) illuminated with wide-band UV excitation. Note the tissue structure with blue autofluorescence. Right: Same tissue and same immunostaining with FITC label illuminated with epi-illumination using narrow-band blue (490 nm) light. Note the increased image contrast (Ploem, 1967)

Milestones in Incident Light Fluorescence Microscopy

Since the middle of the last century, fluorescence microscopy developed into a bio scientific tool with one of the biggest impacts on our understanding of life. Watching cells and proteins with the…
Mar 06, 2017
故事
Milestones in Incident Light Fluorescence Microscopy
[Translate to chinese:] Video Talk by Kurt Thorn: The Abbe Diffraction Experiment

Kurt Thorn的视频讲座:阿贝衍射实验

本讲座介绍了恩斯特-阿贝的著名实验,该实验显示了试样对光线的衍射(以及与照明光线的干涉)是如何产生图像的,以及衍射光线的收集是如何定义显微镜的分辨率的。这些概念是通过使用衍射光栅作为样本,以及可视化和比较后焦平面的衍射图案以及图像平面的图像来展示的。

Porous Ceramics - Sample Preparation for SEM

Application Note for Leica EM RES102 - Ceramic membrane filters with pore sizes down to a few nanometres must be investigated in cross-section with regard to the structure of the pores. The smallest…
Coaxial light with only polarizer open.

具有可实现更高效检查和质量控制的通用照明和各种对比方法的数字显微镜

利用能够实现多种对比度方法的最先进数字显微镜,例如Leica DVM6,对于检查、质量控制和故障分析非常有效。这些对比度方法可以更容易、更快速地检测出产品或组件表面的瑕疵或缺陷。
HeLa cells stimulated with LPS. Image has been subjected to deconvolution.

Chronic Inflammation Under the Microscope

In the course of chronic inflammation certain body areas are recurrently inflamed. This goes along with many human diseases. With the help of widefield light microscopy, the underlying processes can…

什么是OCT?

光学相干断层扫描(OCT)是一种无创、非接触式成像方式,可用于显示并监测生物组织的形态变化。OCT利用低相干干涉原理,可生成横断面视图,以揭示感兴趣组织的亚表面细节。在大部分常见眼科应用中,OCT系统通过近红外光生成角膜、虹膜、晶状体、玻璃体和视网膜等组织微结构的高分辨率体积图像。这些图像可加强对病理状况的理解,例如青光眼、老年性黄斑变性或糖尿病视网膜病变。
Scroll to top