认识 Mica
世界上第一款多模态显微成像分析中枢

Mica 让所有人都能获得显微成像,消除了传统四色荧光成像的限制,极大简化了工作流程。

Read more

活细胞成像

使用现在已开发的各种荧光蛋白和多色探针几乎可以标记任何分子。 对囊泡、细胞器、细胞和组织中的蛋白质动力学成像的能力为了解细胞在健康和疾病状态下如何工作提供了新的洞察力。 这些包括有丝分裂、胚胎发育和细胞骨架变化等过程的时空动态。

研究活细胞时,常见的障碍包括光毒性和光损伤。 要捕捉快速的生物过程,关键是保持细胞健康并获得清晰的图像,确保数据可靠、无伪影。 活‐细胞显微成像通常需要在图像质量与细胞健康之间作出取舍。 在成像过程中必须保持特定的环境条件,以免细胞发生变化。

各种高性能的徕卡成像解决方案可以克服活细胞成像的这些挑战,有助发现细胞生理学和动力学方面的新信息。

立即联系!

我们的活细胞成像应用解决方案专家将竭诚为您提供建议.

您的活细胞成像需求

要想成功地进行活细胞成像实验,使用合适的平台至关重要。 在选择用于活细胞成像的光学显微镜时,应考虑以下 3 个变量:检测器灵敏度(信噪比)、样本活性和图像采集速度。 适合活细胞应用的方法能够在不损伤细胞的情况下对动态事件成像,因为细胞损伤会影响结果。 活细胞成像主要使用荧光显微镜进行。

Visualization of brain organoids with a THUNDER Imager Live Cell – Nucleus (DAPI), p-vimentin (AF488), DCX (AF568), PAX6 (AF647). Uncleared human brain organoid (4 colors); Image courtesy by Atria Kavyanifar, M.Sc. (supervised by Prof. Dr. Lie, Prof. Dr. Winner) University Clinic Erlangen, Germany).

徕卡显微系统的 THUNDER 成像系统、世界上第一款 Microhub 的 Mica、STELLARIS 共聚焦平台和 FLIM 提供了最新的宽场和共聚焦成像创新技术,可快速进行 3D 活细胞成像。

宽场显微镜可灵活激发和快速采集,通常用于对细胞动态和发育进行长时间成像。 共聚焦显微镜通常用于研究亚细胞动态事件。 多光子显微镜可使用较长波长的光激发,可减少光漂白并延长细胞活性。 最后,荧光寿命成像 (FLIM) 可用于研究细胞中的快速动态信号事件。

成像过程中的细胞活性和动力学

徕卡显微系统为您提供活细胞成像方面的智能创新。 我们的解决方案可帮助您获得最佳的图像质量,同时保护好您的样本。 大多数细胞过程在三维空间中随着时间的推移进行。 因此,若要掌握全面的情况,必须以四个维度(XYZ 和时间)对细胞成像。 延时成像方法可捕捉从几秒到几个月内的细胞事件。 也可以在特定时间点对细胞重复成像。 为了在这个过程中保护细胞活性,活细胞成像时需要温度、酸碱度和湿度都受到控制。 曝光量也应在最低限度,以免发生光毒性。

徕卡显微系统提供的成像解决方案有助于优化您对活细胞的研究,即使是长时间的研究也同样如此。 它们能提供必要的图像对比度和分辨率,有助动态事件的分析。 有些徕卡系统还可以实现高速成像,可以避免相同时间点的标签之间发生时空失配,因此不会错过任何关键的细胞事件。

徕卡DMi8倒置显微镜 DMi8 S 高速成像平台

模块化的 DMi8 倒置显微镜是 DMi8 S 平台的核心。DMi8 S 平台是适用于日常活细胞研究的完整解决方案。不管是精确跟踪培养皿中单个细胞的发育,筛选多个分析,获取单分子级的清晰度,还是梳理复杂过程的行为,DMi8 S 系统都能让您看得更多、看得更快,让您发现隐藏的信息。

Live Cell Imaging Products

按应用领域筛选
Mica - The world’s first Microhub

Mica

Mica。观察样本所需的一切都集中在一个易于使用的系统中。同时 4 色宽场,共聚焦分辨率,通过人工智能支持分析。

STELLARIS - 共聚焦显微镜平台

STELLARIS 5 & STELLARIS 8

要发表前沿的研究成果,您需要看到更多细节,尝试新的应用,能够收集到可靠的数据。 我们的使命是成为您在显微镜领域的合作伙伴,助您在科学研究中不断进步。 我们重新打造了共聚焦显?

THUNDER Imager Model Organism

THUNDER Imager Model Organism全自动宏观显微成像系统

THUNDER Imager Model Organism 可在发育或分子生物学研究中对整个生物机体进行 3D 探索。

THUNDER Imager Live Cell & 3D Assay

THUNDER Imager 3D Live Cell3D活细胞培养显微成像系统

THUNDER Imager 可为您提供适用于先进 3D 细胞培养试验的解决方案,无论您想要研究的是干细胞、球状细胞团或是类器官。

THUNDER Imager Tissue

THUNDER Imager Tissue全景组织显微成像系统

THUNDER Imager Tissue 可对通常用于神经系统科学和组织学研究中的 3D 组织切片进行实时荧光成像。

STELLARIS 8 CRS

使用相干拉曼散射显微镜进行无标记化学成像

徕卡DMi1倒置显微镜:专为细胞和组织培养而设计

DMi1

倒置显微镜:专为细胞和组织培养而设计 Leica DMi1

Fast 3D in vivo imaging of Nematostella vectensis (Cnidaria) showing endogenous signal for cilia, nematosomes and clusters of freely circulating cnidocytes (green) and dextran red fluorescence (magenta). Endogenous signals and fluorescence separated by TauGating on HyD S, 340 volumes acquired in 12 min 45 s. Scale bar, 50 μm. Sample courtesy of Anniek Stokkerman and Aissam Ikmi, EMBL Heidelberg.

活细胞温和成像

使用STELLARIS,您不必再为了获得出色的图像而损伤样本健康。 无论您是需要很长的采集时间进行高分辨率的3D图像重构,还是需要高帧频来捕捉高速动态事件,我们的高效信号探测技术可确保您在防止样本受到光漂白和光毒性影响的前提下完成所需要的实验。

Live cell imaging related articles

阅读我们的最新文章

作为徕卡显微系统有限公司 的信息门户,ScienceLab (徕卡课堂) 提供许多关于显微技术主题的科研和教学材料。其内容宗旨在于为初学者、有经验的从业者和科学家等的日常工作和实验提供支持。

More Articles

[Translate to chinese:]

如何为免疫荧光显微镜制备样本

免疫荧光(IF)是一种用于可视化观察细胞内过程、状态和结构的强大工具。IF制剂可通过多种显微镜技术(如激光共聚焦、宽场荧光、全内反射成像等)来加以分析,具体取决于应用目的或研究人员的关注重点。与此同时,在很多使用至少一套简易荧光显微镜的研究工作组当中,IF早已成为不可缺少的一部分。
阅读文章
4D morphological information of Arabidopsis thaliana cotyledon pavement cells mapped using both direct water immersion observations and computational image analyses, including segmentation, surface modeling, virtual reality and morphometry.

使用VR展示4D细胞模型

Takumi Higaki和Hidenobu Mizuno博士发明使用VR展示4D细胞模型子叶扁平细胞在Aivia人工智能软件中的四维显示
阅读文章
Colourised binary mask of a time-lapse microscopy field of view of medium confluency

使用深度学习技术追踪单细胞

人工智能解决方案在显微镜领域的应用不断拓展。从自动化目标分类到虚拟染色,机器学习和深度学习技术在帮助显微镜学家简化分析工作的同时,也在持续推动科学技术领域的突破。
阅读文章

显微镜在病毒学中的应用

引起新型冠状病毒肺炎(Covid-19)的冠状病毒SARS-CoV-2肆虐全球并影响了我们生活的方方面面。对于免疫和治疗方法的搜索研究(即如何抗击该病毒)成为了2020年全人类的第一要务。显微镜在这类研究中起着重要作用。为了了解受体结合、基因组释放、复制、装配和病毒出芽的基本原理以及我们的免疫系统效应,可以使用不同的方法和显微镜。本文概述了为什么显微镜是病毒学和感染生物学的重要工具,并举例说明了不…
阅读文章

荧光寿命成像与荧光共振能量转移

荧光寿命是荧光团在发射荧光光子返回基态之前保持其激发态的平均时间长度。这取决于荧光团的分子组成和纳米环境。 FLIM将寿命测量与成像相结合:对每个图像像素以测得的荧光寿命进行颜色编码,产生额外的图像反差。因此,FLIM可以提供关于荧光分子空间分布的信息和有关其生化状态或纳米环境的信息。…
阅读文章

活细胞成像简介

了解复杂且快速变化的细胞动力学是深入探索生物进程的重要一步。因此,现代生命科学研究越来越需要关注于在分子水平上实时发生的生理事件。
阅读文章

The Patch-Clamp Technique

Especially in neuroscience, the physiology of ion channels has always been a major topic of interest. The development of the patch-clamp technique in the late 1970s has given electrophysiologists new…
阅读文章

关于活细胞成像

除了细胞或器官的结构组织,细胞动态过程是一个功能生物实体的主要贡献者。当然,这些过程可以在活细胞中通过非侵入性技术如光学方法观察到,统称为“活细胞成像”方法。活细胞成像涵盖了所有用显微镜观察活细胞的技术——从用体视显微镜观察胚胎发生,到用复合显微镜研究细胞生长,直到用荧光染料或荧光蛋白研究细胞的生理状态或细胞运输。尽管对实验人员和设备(如成像系统,温度、CO2浓度控制)都要求很高,但活细胞成像技术提供的结果是当今研究不可或缺的。

有兴趣了解更多?

请与我们的专家交流。 我们很乐意回答您的所有问题和疑虑。

联系我们

您想获取专人咨询吗?