利用多孔板中的细胞培养支撑物对干细胞进行动态研究
本文展示了如何使用THUNDER成像仪高效地对设置在多孔板中的细胞支撑物上的活细胞进行成像,以检查细胞生长情况。
如何优化您的组织学工作流程
简化您的组织学工作流程。独特的 Fluosync 检测方法内置于Mica中,可实现单次高分辨率 RGB 彩色成像。
如何深入了解类器官和细胞球模型
在本电子书中,您将了解3D细胞培养模型(如类器官和细胞球)成像的关键注意事项。探索创新型显微镜解决方案,来实时记录类器官和细胞球的动态成像过程。
神经科学显微镜面临哪些挑战?
显微镜是神经科学研究领域的强大工具。不过,当涉及到对神经过程进行成像以及使用不同的样品类型(例如厚神经组织或脑类器官)时,科研人员可能会面临到很多挑战。这本30页的电子书包含众多真实的案例,以讨论我们最常见到的一些挑战,同时展示了如何使用THUNDER 成像技术克服这些挑战。
显微镜在空间生物学中的应用:显微镜指南
本电子书旨在探索显微镜中的关键空间生物学方法,例如多重成像技术,这个方法有助于将独立的细胞信息放入空间环境来分析。
FLUOSYNC - 一种快速而温和的多色光谱拆分成像方法
在本白皮书中,我们重点介绍如何使用一种快速、可靠的方法在荧光显微镜下获得高质量多通道图像。FluoSync 将现有的光谱混合拆分方法与同步采集多个光谱探测范围相结合,一步到位。这样,多个荧光团可同时成像,而且无需担心荧光串扰、滤光片的选择或在高速成像下损失重要光子的问题。从样本中获得真正的信号从未如此容易。
低温光学显微镜的新成像工具
荧光显微镜图像能够为cryo-FIB加工提供定位支持,其质量决定了所制备薄片的结果。本文描述了LIGHTNING技术是如何显著提高图像质量,以及如何利用该技术基于荧光寿命的信息来辨别样品的不同结构。
如何对荧光结构三维定位以进行冷冻FIB切片
冷冻ET(电子断层扫描)是一种专用的透射电子显微镜技术,可以重建观察区域的三维体积。借助先进的冷冻EM(电子显微镜),图像分辨率可以提升到令人难以置信的亚纳米等级。因此,可以在细胞内的原生环境中研究蛋白质以及其他生物分子,从而揭示尚未探明的分子机制。由于细胞和组织必须薄到能够透过电子,样品必须进行切片以获取足够薄的样品体积(薄层)。为对样品中的靶区进行精确的三维定位,冷冻共聚焦显微镜是必不可少的工…
多通道活细胞成像注意事项
同时多色成像,确保实验成功:活细胞成像实验是了解动态过程的关键。这类实验使我们能够观察记录活体状态下的细胞,而不会可能因固定或终止不同活体过程而产生干扰性伪影。