联系我们

冷冻断裂与冷冻蚀刻基础介绍

Revealing hidden internal structures of biological and material samples

 Acr8859026871730327192.jpg

揭示生物学样本和材料样本原本无法观察到的内部结构。冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。

适合于电子显微镜的环境

电子显微镜的间室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。

生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。

要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。

水的升华与凝结 – 冷冻蚀刻与污染

要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。

水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。

注意:良好的真空度会降低水分压。

例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。

执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。

样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。

纯水的理论升华速度会降低,因为:

  • 样本深处的水升华速度比表面上的水更慢。
  • 盐和大分子溶剂会降低升华速度。
  • 生物样本中大量存在的结合水会降低升华速度。

通过冷冻断裂生成图像

冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。

冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复制品进行TEM成像或在SEM的试块面上进行成像。

对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转阴影。

蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复制品也不会粘在一起。

冷冻断裂酵母的单向投影

应用

相关文章

Background image
Scroll to top