Leica LMD6 & LMD7
正置显微镜
复合光学显微镜
产品
首页
Leica Microsystems
Leica LMD6 & LMD7 激光显微切割
出色切割
阅读我们的最新文章
Factors to Consider When Selecting a Research Microscope
An optical microscope is often one of the central devices in a life-science research lab. It can be used for various applications which shed light on many scientific questions. Thereby the…
人工智能与深度视觉蛋白质组学 (DVP) 相结合,推进疾病研究
在这次网络研讨会上,Andreas Mund 博士将介绍深度可视蛋白质组学(DVP)--一种将人工智能驱动的组织空间分辨、非靶向蛋白质组学相结合的尖端平台。他展示了 DVP 如何从最小的、表型匹配的细胞群中识别数千种蛋白质,并在复杂的临床组织样本中生成高分辨率分子图谱,从而在细胞水平上解码疾病机制。
利用激光显微切割发现生物标记物
探索空间蛋白质组学工作流程的潜力,如深度视觉蛋白质组学(DVP),以破译病理机制和发现药物靶点。蛋白质表达、丰度或活性的改变会严重影响细胞功能--通常会导致疾病。值得注意的是,相邻细胞之间的蛋白质组可能存在巨大差异。空间蛋白质组学关注到这种细胞异质性,从而揭示了病理机制。激光显微切割技术(LMD)可获取单细胞进行下游分析,同时保留其空间环境,为空间蛋白质组学奠定了基础。
空间蛋白质组学的突破如何拯救生命
中毒性表皮坏死溶解症(TEN)是一种罕见的、但对抗生素或痛风治疗等常见药物的破坏性反应。这种疾病开始时并无大碍,通常只是皮疹,但会迅速升级为大面积皮肤脱落,类似于严重烧伤。尽管 TEN病情十分严重,但其基本机制仍然难以捉摸,治疗方案也仅限于支持性护理。TEN 的死亡率高达 30%,长期以来一直是临床医生的噩梦,直到现在才有了靶向疗法。
基于激光的视神经再生研究新方法
由于哺乳动物中枢神经系统(CNS)的自我修复能力有限以及传统损伤模型的不一致性,视神经再生是神经生物学的一大挑战。相比之下,爪蟾蝌蚪的视神经在受伤后可以再生,因此是研究轴突再生的分子和细胞机制的理想模型。在本应用说明中,我们展示了如何利用激光显微切割技术(LMD)对蝌蚪的视神经进行精确、一致的横切,从而开发出适合成像、转录组分析和功能恢复研究的高重复性损伤模型。
神经科学研究指南
神经科学通常需要研究具有挑战性的样本,以便更好地了解神经系统和疾病。徕卡显微镜可帮助神经科学家深入了解神经元的功能。
利用空间蛋白质组学工作流程改革研究工作
空间蛋白质组学是《自然-方法》2024 年度方法,正在推动癌症、免疫学等领域的研究进展。通过将定位数据与组织中蛋白质的高通量成像结合起来,研究人员可以发现疾病进展和治疗反应方面的洞察力,从而更好地了解人类生物学。在这里,您可以了解更多有关空间生物学的信息,以及徕卡显微系统的工具如何推动蛋白质生物标记的可视化和分析取得进展。
深度视觉蛋白质组学提供精确的空间蛋白质组信息
尽管可使用基于成像和质谱的方法进行空间蛋白质组学研究,但是图像与单细胞分辨率蛋白丰度测量值的关联仍然是个巨大的挑战。最近引入的一种方法,深层视觉蛋白质组学(DVP),将细胞表型的人工智能图像分析与自动化的单细胞或单核激光显微切割及超高灵敏度的质谱分析结合在了一起。DVP在保留空间背景的同时,将蛋白丰度与复杂的细胞或亚细胞表型关联在一起。
空间生物学指南
什么是空间生物学?在后组学时代,研究人员如何利用空间生物学工具来满足生物学问题日益增长的需求?本文简要概述了空间生物学及其技术,以及这一快速发展中的领域的关键研究问题。
激光显微切割技术导论
组织学和生物学样本的异质性通常要求在分子生物学分析前从周围组织中分离出特定的单个细胞或细胞群。激光显微切割(LMD)是一种高效选择性收集用于制备DNA、RNA、蛋白质或其他生物材料样本以供分析的方法。这是一种显微镜控制的操纵技术,利用聚焦激光束精确分离样本、细胞和组织。本文阐述了LMD的基本原理。
激光微切割(LMD)促进的分子生物学分析
使用激光微切割(LMD)提取生物分子、蛋白质、核酸、脂质和染色体,以及提取和操作细胞和组织,可以深入了解基因和蛋白质的功能。它在神经生物学、免疫学、发育生物学、细胞生物学和法医学等多个领域有广泛应用,例如癌症和疾病研究、基因改造、分子病理学和生物学。LMD 也有助于研究蛋白质功能、分子机制及其在转导途径中的相互作用。
空间代谢组学:探索肿瘤复杂性和治疗见解
在癌症研究中,理解肿瘤细胞与其微环境之间的相互作用至关重要,因为肿瘤微环境显著影响肿瘤进展。空间代谢组学是一种由研究人员开发的新方法,用于研究这一复杂性。通过揭示肿瘤微环境中的空间变化,该方法提供了对其多样化成分及其组织的宝贵见解。这些见解不仅影响临床结果,还为治疗反应提供信息,为个性化治疗策略铺平道路。
基于激光显微切割的稀疏细胞脂质组学分析
通过高覆盖率靶向脂质组学分析稀疏细胞,深入探讨细胞复杂性。这种先进的方法结合了激光显微切割(LMD)和液相色谱-质谱/质谱(LC-MS/MS),揭示了单细胞水平的代谢变化,阐明了糖尿病和肥胖等疾病。通过采用激光显微切割(LMD)获得无污染样本,并使用 SCIEX 7500 系统提高灵敏度,该方法成功检测到 285…
利用激光显微切割(LMD)在空间背景下分离神经元
在阿尔茨海默病之后,帕金森病是第二常见的进行性神经退行性疾病。在首发症状出现之前,中脑中高达70%的多巴胺释放神经元已经死亡。本文描述了如何使用现代激光显微切割(LMD)方法帮助解决帕金森病之谜。研究涉及在空间背景下分离和分析神经元。这些细胞来自帕金森病患者的死后黑质组织样本,以便深入了解该病的分子机制。
激光显微切割技术如何助力神经科学研究取得开创性进展?
玛尔塔·帕特林尼博士,卡罗林斯卡学院的高级科学家,分享了她在成人人类神经发生开创性研究中使用激光显微切割(LMD)的经验,并提供了关于LMD在空间蛋白质组学和精准医学中未来应用潜力的个人见解。
激光显微切割技术用于组织和细胞分离的协议 - 免费下载电子书
激光显微切割(LMD,也称为激光捕获显微切割或LCM)使用户能够分离特定的单个细胞或整个组织区域,甚至亚细胞结构如染色体。纯化的组织和细胞可用于下游的RNA、DNA和蛋白质组工作流程。
采用徕卡THUNDER-DM6B观察SARS-CoV-2感染宿主细胞及其复制过程
冠状病毒2致重度急性呼吸综合征(SARS-CoV-2)
冠状病毒2致重度急性呼吸综合征(SARS-CoV-2)出现于2019年末,并快速传播全世界。由于其大面积的影响,研究人员对病毒的性质进行了深入的研究以期最终阻止大流行。一个重要的方面是病毒如何在宿主细胞中复制。Ogando及其同事的研究已经揭示了SARS-CoV-2的复制动力学、适应能力和细胞病理学。他们的工具之一是用荧光显微镜观察SARS…
利用 SPARCS 探索亚细胞空间表型
功能日益强大的显微镜可提供信息丰富的各种细胞表型数据。如果与深度学习的最新进展相结合,这将成为在基因筛选中读出感兴趣的生物表型的理想技术。在本网络讲座中,您将了解到空间分辨 CRISPR 筛选 (SPARCS),这是一种利用自动化高速激光显微切割技术在人类基因组尺度上揭示各种亚细胞空间表型的平台。
空间生物学:理解全景
空间生物学:了解分子、细胞和组织在原生空间环境中的组织和相互作用
解析肿瘤微环境中的蛋白质组异质性
本讲座将重点介绍激光显微切割技术与微型化定量蛋白质组学/磷酸化蛋白质组学的前沿应用,以揭示肿瘤内部及肿瘤间精细的异质性。这些颠覆性成果为加速发现新型癌症分子亚型、治疗靶点、预后标志物及伴随诊断提供了前所未有的机遇。
徕卡激光显微切割技术 20 周年
表型-基因型关系是获取洞见的关键,与徕卡显微系统(Leica Microsystems)"从观察到洞见"的理念高度契合,尤其体现在激光显微切割技术(Laser Microdissection,简称 LMD 或 LCM,即激光捕获显微切割)上。该技术采用非接触式、无污染的方法,能从多样化的组织样本中精准分离特定单细胞或整个组织区域。
激光显微切割耗材
激光显微切割(LMD)系统拥有多种不同类型的耗材,覆盖从基础到高度专业化的广泛应用领域,使科研人员能够根据自身研究选择个性化配置方案
病毒学
您的主要研究对象是病毒感染和疾病吗? 了解如何使用徕卡显微系统公司的成像和样本制备解决方案深入研究病毒学。
工作流程与协议:如何使用徕卡激光显微切割系统和 Qiagen 试剂盒进行成功的 RNA 分析
激光显微切割(LMD)允许分离单个细胞或染色体,是一种在下游分析核酸内容(通过 PCR 或测序技术)之前进行样本准备的成熟技术。在这里,我们描述了徕卡LMD系统与 Qiagen 试剂盒成功结合的过程,即使在少量样本中也能有效提取核酸。所呈现的工作流程和协议为成功的LMD应用提供了基础,确保在过程中不损失核酸数量,并保持 RNA 的完整性,突显了产品的高质量。
对性侵证据中的精子进行法医检测
现代科学方法对于犯罪现场证据分析的影响为法医学的多个子领域带来了极大的改变。最为引人注目的一个例子或许就是分子生物学对于生物证据分析的影响。
应用领域
公检法取证
作为一名法医科学家,显微镜和成像设备必须准确、优质、正确和可重复的结果,确保成功地检验证据。徕卡显微系统支持量化、分析和记录结果,从日常实验室到完整的自动化系统,提供各种法医显微镜解决方案。