生命科学研究

生命科学研究

生命科学研究

在生命科学研究中心,您可以掌握最新的关于先进显微镜、成像技术、电镜样品制备和图像分析的前沿应用和创新,涵盖的主题包括细胞生物学、神经科学和癌症研究。希望在这里可以帮助您提升研究能力和精进显微镜在各个科学领域实际应用,并了解徕卡如何通过精确的可视化、图像解读和推进研究进展来赋能您的工作。
C. elegans adult hermaphrodite gonades acquired using THUNDER Imager. Staining: blue - DAPI (nucleus), green - SP56 (sperm), red - RME-2 (oocyte), magenta - PGL-1 (RNA + protein granules). Image courtesy of Prof. Dr. Christian Eckmann, Martin Luther University, Halle, Germany.

生命科学研究: 哪种显微镜相机适合您?

相机是显微镜系统的重要组成部分,对系统的性能有重大影响。在选择相机时,重要的是不仅要看技术规格,还要考虑您的样品、技术、对比方法以及您希望获得的数据类型。
Branched organoid growing in collagen where the Nuclei are labeled blue. To detect the mechanosignaling process, the YAP1 is labeled green.

检查癌症类器官的发展进程

德国慕尼黑工业大学的Andreas Bausch实验室研究细胞和生物体中不同结构和功能形成的细胞和生物物理机制。他的团队设计了新的策略、方法和分析工具,以量化微米和纳米等级的发展机制和动态过程。关键研究领域包括干细胞和类器官,从乳腺类器官到胰腺癌类器官,以更好地了解疾病模型。
Fluorescence microscope image of a life-science specimen

荧光入门介绍

荧光是George Gabriel Stokes于1852年首次报道的一种现象。他观察到萤石在紫外线照射后开始发光。荧光是光致发光的一种形式,是指一种材料被光照射后会发射出光子。发射光的波长比激发光更长。这种效应又称为斯托克斯位移。
Masson-Goldner staining of a hedgehog brain slice.

如何利用单个系统对组织学荧光样品进行成像

在本集MicaCame中,主持人Lynne Turnbull和Patric Pelzer将带您探寻生物样本染色的历史之旅。他们将解释为什么您通常必须选择为组织学样品或荧光样品选择特定的系统,以及如何利用新的成像技术克服这一点。

超越反卷积

宽场荧光显微镜通常用于视觉呈现生命科学样本中的结构并获取重要信息。利用荧光蛋白或染料,以高度特异性的方式标记离散的样本部分。为了充分了解某种结构,可能需要以三维方式呈现,但这会对使用显微镜带来某些挑战。

如何从根本上简化成像设备的工作流程

本集MicaCam中,来自伦敦大学学院(UCL)的特邀嘉宾Christopher Thrasivoulou博士将从成像设备的角度讨论使用Mica的优势。他将讨论如何简化复杂生物系统的成像工作流程并实现自动化。这有助于科学家节省为获取有意义的量化分析结果而投入的时间和精力。为了举例说明此类工作流程,他还会展示如何对荧光标记的固定斑马鱼胚胎进行多色成像。

免疫细胞在组织样品中的共聚焦成像

在本次网络研讨会中,您将探索如何使用共聚焦显微镜对组织样品进行10色成像,并了解这一技术如何有助于评估皮肤免疫状况。
Combining spectrally resolved detection and fluorescence lifetime multiplexing

使用有机荧光团的活细胞荧光寿命多标技术

点播网络研讨会: 如何利用荧光寿命多标技术结合光谱分辨检测技术对更多亚细胞目标进行成像。

利用微流控技术保持活细胞成像期间的细胞健康

点播视频——在这集MicaCam中,我们将使用微流控技术探索对细胞形态的剪切应力,检查3D细胞培养期间营养物质补充对细胞生长的影响,并观察长期培养期间球状体的发育。
Scroll to top