生命科学研究

生命科学研究

生命科学研究

在生命科学研究中心,您可以掌握最新的关于先进显微镜、成像技术、电镜样品制备和图像分析的前沿应用和创新,涵盖的主题包括细胞生物学、神经科学和癌症研究。希望在这里可以帮助您提升研究能力和精进显微镜在各个科学领域实际应用,并了解徕卡如何通过精确的可视化、图像解读和推进研究进展来赋能您的工作。
Single timepoint of a time-lapse recording of mammary epithelial micro spheroid cultured in 3D highlighting individual mitotic events

在不同尺度下观察复杂的细胞相互作用

细胞间的相互作用很难观察,其中涉及的目标检测和关系衡量尤为棘手。没有简单易用的目标检测及其关系测量方法,很难观察到细胞间的相互作用。
Aivia_Neuroscience-VBE comparison mouse-1_traced_ROI

自动化加速神经元图像分析

复杂神经投射的检测能力主要取决于大规模神经元网络的精确重建。神经科学研究中的大多数数据析取方法都非常耗时和易错,进而导致进度延误和错误。在本次研讨会中,Aivia将演示如何利用自动化技术提升图像分析工作流的效率
Separation of cells based on their tracking status: A colourised binary mask of a time-lapse microscopy field of view of medium confluency with individual cells highlighted as survivors if they can be tracked since the initial movie frame (cyan), incomers if they migrated into the field of view throughout the movie (yellow) or mistracks if an error occurred in the automated trajectory reconstruction (red).

使用深度学习技术追踪单细胞

人工智能解决方案在显微镜领域的应用不断拓展。从自动化目标分类到虚拟染色,机器学习和深度学习技术在帮助显微镜学家简化分析工作的同时,也在持续推动科学技术领域的突破。
Analysis of anatomy and axon orientation of an adult mouse brain tissue with QLIPP.

通过光学属性了解细胞结构

在过去3年中,显微学家开始在广泛的应用中使用人工智能解决方案,包括图像采集优化(智能显微镜)、目标分类、图像分类、分割、还原、超分辨率和虚拟染色。
AiviaMotion: Truly simultaneous multicolor imaging of live cells (U2OS) in 3D

人工智能和共焦显微镜 - 需知信息

本常见问题清单是对AiviaMotion介绍文章“人工智能如何增强共焦成像”的补充,并为相关问题提供了实用的解答。
Dynamic Signal Enhancement powered by Aivia: Truly simultaneous multicolor imaging of live cells (U2OS) in 3D

人工智能如何增强共聚焦成像

在本文中,我们将展示人工智能(AI)如何增强您的成像实验。即,由 Aivia 提供支持的动态信号增强如何在捕捉活细胞样本的时间动态的同时提高图像质量。

基于荧光寿命的成像图库

共聚焦显微镜技术依赖于荧光探针的有效激发以及由荧光过程所发射的光子的高效收集。荧光特性之一是其发射波长(即荧光团的光谱特征)。另一个更为强大但尚未充分探索的特性是荧光寿命(荧光团在激发态的持续时间)。基于荧光寿命的信息增加了共聚焦实验的一个额外维度,能够揭示荧光团微环境的信息,并允许对光谱特性相重叠的物种进行多重分析。

多彩图库

荧光多色显微技术是多重成像技术的一个方面,可在同一实验中观察和分析同一样本中的多种元素--每种元素都标记有不同的荧光染料。这不仅能提高实验效率,还能获得更可靠、更有意义的结果,从而了解细胞和组织内的复杂过程。本图集展示了使用THUNDER和STELLARIS平台获得的标有多种荧光探针的样本图像。

应用于显微术中的人工智能技术网络研讨会

我们展示了使用残差通道注意力网络(RCAN)还原和增强三维延时(4D)荧光显微数据。
Scroll to top