工业

工业

工业

深入探讨有关工业和病理学领域的高效检测、优化工作流程和提高人体工学舒适度的文章和网络研讨会。涉及的主题包括质量控制、材料分析、病理学显微镜等。在这里您可以获得有关使用前沿技术提高生产力和优化质量以及准确地进行病理学诊断的干货。
Cell DIVE image of stromal remodeling around B cell follicles of follicular lymphoma patients. Stromal cells labeled with antibodies against desmin (red), SPARC (orange), vimentin (blue), and a-sma (yellow). Extracellular matrix labeled with antibody against lumican (cyan). B cells labeled with antibody against CD20 (green). Image credit: Dr. Andrea Radtke, Center for Advanced Tissue Imaging, NIAID, NIH

通过开放多重化和细胞 DIVE 赋能空间生物学

空间生物学和多重成像工作流程在免疫肿瘤学研究中变得越来越重要。许多研究人员即使使用有效的工具和方案,也很难提高研究效率。我们将介绍研究人员如何利用开放式超多重免疫荧光的适应性,将 IBEX 成像与Cell DIVE 相结合,创造了一种名为 Cell DIVE-IBEX 的技术。它让这些研究人员能够调整现有的技术和试剂,并获得Cell DIVE 在其免疫肿瘤学研究中的可扩展性。

基于人工智能的多重图像分析以探索结肠腺癌

在这项研究中,我们展示了一种利用Cell DIVE和AIVIA软件的空间生物学工作流程,以绘制结肠腺癌中的肿瘤免疫景观图。

肿瘤空间微环境的元癌症分析

研究 TME中肿瘤、基质和免疫细胞之间的相互作用需要采用超多重免疫荧光成像方法。在这里,我们分析了一组Cell Signaling Technology(CST®)抗体,这些抗体针对肺癌、结肠癌和胰腺癌等癌症的标志物。通过Cell DIVE成像和Aivia中的聚类分析,我们确定了TME中的空间相互作用,包括组织特异性和共有的相互作用。
Multiplexed Cell DIVE imaging of Colon Adenocarcinoma (CAC) tissue. A panel of approximately 30 biomarkers targeted towards various leukocyte lineages, epithelial, stromal, and endothelial cell types was utilized to characterize the tumor immune microenvironment in human colon adenocarcinoma (CAC) tissue.

通过成像和AI绘制结直肠癌的景观

结肠癌是一种高负担疾病。尽管进行了化疗干预和手术切除,但疾病可能会复发。了解结肠癌微环境对于改善治疗效果是必要的。在这里,我们使用空间生物学方法,通过Cell DIVE和 Aivia可视化结肠腺癌组织中的30个生物标志物。我们探讨了肿瘤组织的血管化、免疫细胞反应和细胞增殖。
Clustering based analysis reveals various immune cell populations enriched in tumor cells within CT26.WT syngeneic mouse tumor models.

肿瘤组织中肿瘤和免疫细胞的空间结构

免疫检查点阻断(ICB)疗法在许多癌症中具有临床益处,但一些患者并无反应。最佳的治疗组合可能受到肿瘤内存在的免疫抑制机制的影响。
Pancreatic Ductal Adenocarcinoma with 11 Aerobic Glycolysis/Warburg Effect biomarkers shown – BCAT, Glut1, HK2, HTR2B, LDHA, NaKATPase, PCAD, PCK26, PKM2, SMA1, and Vimentin.

IBEX、Cell DIVE 和 RNA-Seq:一种针对滤泡性淋巴瘤的多组学方法

在拉德特克等人最近的一项研究中,多组学空间生物学方法有助于揭示早期复发淋巴瘤患者的病情。

加速不同组织多重成像的发现

组织的多重成像对于肿瘤-免疫相互作用的研究以及人类细胞图谱等发现工作越来越重要。 欢迎加入我们的演讲,Andrea J. Radtke 博士解释了如何使用迭代漂白扩展多重性 (IBEX) 绘制组织图谱,并讨论了用于多重成像的广泛社区资源。
2D slice of colon cancer tissue stained with 30 markers and imaged using the Cell DIVE system. Analysis performed using Aivia 13’s new multiplex cell detection recipe and automatic clustering tool. Each phenotype denoted in a different color.

基于 AI 引导的多重二维数据向空间洞察的转化

Aivia 13 能够处理大型二维图像,使研究人员能够通过检测数百万个对象和自动聚类多达 30 个标记物,深入理解其表型周围的微环境。
Hepatocellular Carcinoma with 13 biomarkers shown – Beta-Catenin, CD3D, CD4, CD8a, CD31, CD44, CD163, DAPI, PanCK, PCK26, PD1, SMA, and Vimentin.

利用蛋白质标记成像了解肿瘤异质性

Alison Cheung博士展示了如何利用蛋白质多重成像技术为癌症研究提供定量见解,与她一起探索肿瘤异质性和免疫细胞动态。
Scroll to top