THUNDER Imager Cell Spinning Disk系统

通过协同作用提高清晰度

阅读我们的最新文章

Boston Innovation Hub

The Boston and San Francisco Innovation Hubs - Cutting-Edge Imaging Facilities

The Boston and San Francisco Innovation Hubs are here to help you advance scientific discovery. We provide academic and industrial researchers access to state-of-the-art microscope technology and…
Image: Human stem cell-derived mid brain organoids. Courtesy of Dr Tanya Singh, University of Oxford.

揭开类器官模型在生物医学研究中的秘密

准备深入了解类器官和3D培养物的世界,它们是促进我们了解人类健康的重要工具。浏览这些复杂的结构并获取清晰的图像进行分析是一项挑战。在本次活动中,来自牛津大学和伦敦大学学院的研究人员将与我们一起展示Thunder Imager Cell转盘共聚焦系统 如何提供更有说服力的高质量数据,以便深入了解各种模型。
微管蛋白的 TIRF 图像,YFP 标记,穿透深度:120 毫米

全内反射荧光显微镜(total internal reflection fluorescent microscope,TIRFM)在生命科学研究中的应用

全内反射荧光显微镜的独特之处在于利用衰逝波激发荧光团。与传统的弧光灯、LED 或激光宽场荧光照明方式不同,衰逝波仅能从盖玻片/介质界面开始穿透样本约 100 纳米深度。
表达 GFP 标记的细胞粘附分子 CD44 的乳腺癌肿瘤细胞的 TIRF 图像,该分子位于细胞膜上,通过 TIRF 成像。

全内反射荧光(total internal reflection fluorescent microscope,TIRF)显微镜

全内反射荧光(TIRF)是荧光显微镜技术中的一项特殊技术,由密歇根大学安娜堡分校的 Daniel Axelrod 于 1980 年代初开发。TIRF 显微镜能提供轴向分辨率低于 100 纳米的超高清晰图像,这使得观察膜相关过程成为可能。

应用领域

类器官和3D细胞培养

生命科学研究中最令人振奋的最新进展之一是3D细胞培养系统的发展,例如类器官、球状体或器官芯片模型。 3D细胞培养物是一种人工环境,在这种环境中,细胞能够在三维空间中生长并与周围环境相互作用。 这些环境条件与它们在体内的情况相似。

THUNDER Imaging Systems

为了解答重要的科研问题,这些系统甚至能深入原始样品中实时呈现清晰的细节,不会产生任何离焦模糊。现如今,为3D样品进行清晰成像就像使用您最喜爱的摄像头荧光显微镜一样简单。采用 Computational Clearing 的 THUNDER 定义了一类全新的仪器,可对厚三维样品进行高速、高品质成像。
Scroll to top